Fabrication, Physicochemical Characterization and Evaluation of In vitro Anticancer Efficacy of a Novel pH Sensitive Polymeric Nanoparticles for Efficient Delivery of Hydrophobic Drug against Colon Cancer
نویسندگان
چکیده
Article history: Received on: 15/09/2015 Revised on: 05/10/2015 Accepted on: 04/11/2015 Available online: 27/11/2015 Objective: The present investigation was aimed to overcome the limitations and to enhance the incorporation of the hydrophobic drug into polymeric nanoparticles and characterize the prepared nanoparticles and also to evaluate the in vitro anticancer efficacy of prepared nanoparticles. Method: Nanoprecipitation method was used to prepare plain and hydrophobic drug (Camptothecin) loaded polymeric nanoparticles. Prepared nanoformulations were evaluated for average particle size, particle size uniformity, surface area, zeta potential, surface morphology, drug content, encapsulation efficiency, drug loading, in vitro release, anticancer activity and stability studies at long term and accelerated storage conditions. Results: Plain and Camptothecin loaded polymeric nanoparticles were successfully prepared by nanoprecipitation method using stirring technique. Prepared Camptothecin encapsulated polymeric nanoparticles were (a) spherical in shape with size < 100 nm, displayed excellent uniformity with <0.3 and zeta potential > 20 mV; (b) showed > 95% release in colonic environment; (c) demonstrated enhanced anticancer activity than pure Camptothecin; and (d) extremely stable at both long term and accelerated storage conditions. Conclusion: In summary, the investigation concluded that the prepared Camptothecin encapsulated polymeric nanoformulations may be considered as an attractive and promising formulation which significantly overcome the limitations of Camptothecin and synergistically enhance its anticancer activity.
منابع مشابه
Encapsulation of irinotecan in polymeric nanoparticles: Characterization, release kinetic and cytotoxicity evaluation
Objective(s): Irinotecan is a potent anti-cancer drug from camptothecin group which inhibits topoisomerase I. Recently, biodegradable and biocompatible polymers such as poly lactide-co-glycolides (PLGA) have been considered for the preparation of nanoparticles (NPs). Materials and Methods: In this study, irinotecan loaded PLGA NPs were fabricated by an emulsification/solvent diffusion method to...
متن کاملBSA nanoparticles loaded with IONPs for biomedical applications: fabrication optimization, physicochemical characterization and biocompatibility evaluation
Objective(s): Cancer diagnosis in its early stages of progress, can enhance the efficiency of treatment utilizing conventional therapy methods. Non-biocompatibility of iron oxide nanoparticles (IONPs) has made a big challenge against their usage as a contrast agent. Efficient coverage by biomolecules such as albumin can be a solution to overcome this problem. Herein, albumin-coated IONPs were p...
متن کاملFormulation and Evaluation of Chondroitin Sulphate Tablets of Aceclofenac for Colon Targeted Drug Delivery
The aim of the present study was to develop a single unit, site-specific matrix tablets of aceclofenac allowing targeted drug release in the colon with a microbially degradable polymeric carrier, chondroitin suphate (CS) and to coat the optimized batches with a pH dependent polymeric. The tablets were prepared by wet granulation method using starch mucilage as a binding agent and HPMC K-100 ...
متن کاملLipid Nanocapsules for Imatinib Delivery: Design, Optimization and Evaluation of Anticancer Activity Against Melanoma Cell Line
Lipid nanocapsules (LNCs) represent a stable, biocompatible and worthwhile drug delivery system, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. Imatinib, a potent tyrosine kinase inhibitor, has revolutionized the therapy of malignancies resulting from abnormal tyrosine kinase activity. However, its Clinical effectiveness in cancer treatment is h...
متن کاملDesign and Construction of Ph-Sensitive Drug Delivery System Based on Metal-Organic Framework (MOF) Nanoparticles for Cancer Treatment by Drug Delivery System Containing Curcumin
Introduction: Much research has been carried out to improve drug delivery and targeted drug delivery to the body in order to minimize side effects, provide controlled delivery of the drug to the desired location and to achieve optimal therapeutic effects. Zeolitic imidazolate-8 (ZIF-8) is a subset of MOFs that are biocompatible, stable in the aquatic environment and have adjustable porosity. In...
متن کامل